

 Navigation

 	
 index

 	
 next |

 	repoze.tm2 2.0 documentation

Documentation for repoze.tm2 (repoze.tm fork)

Overview

repoze.tm2 is WSGI middleware which uses the ZODB package’s
transaction manager to wrap a call to its pipeline children inside a
transaction.

Note

repoze.tm2 is equivalent to the repoze.tm
package (it was forked from repoze.tm), except it has a
dependency only on the transaction package rather than a
dependency on the entire ZODB3 package (ZODB3 3.8 ships
with the transaction package right now). It is an error to
install both repoze.tm and repoze.tm2 into the same environment, as
they provide the same entry points and import points.

Behavior

When this middleware is present in the WSGI pipeline, a new
transaction will be started once a WSGI request makes it to the
middleware. If any downstream application raises an
exception, the transaction will be aborted, otherwise the transaction
will be committed. Any “data managers” participating in the
transaction will be aborted or committed respectively. A ZODB
“connection” is an example of a data manager.

Since this is a tiny wrapper around the ZODB transaction module, and
the ZODB transaction module is “thread-safe” (in the sense that its
default policy is to create a new transaction for each thread), it
should be fine to use in either multiprocess or multithread
environments.

Purpose and Usage

The ZODB transaction manager is a completely generic transaction
manager. It can be used independently of the actual “object database”
part of ZODB. One of the purposes of creating repoze.tm was to
allow for systems other than Zope to make use of two-phase commit
transactions in a WSGI context.

Let’s pretend we have an existing system that places data into a
relational database when someone submits a form. The system has been
running for a while, and our code handles the database commit and
rollback for us explicitly; if the form processing succeeds, our code
commits the database transaction. If it fails, our code rolls back
the database transaction. Everything works fine.

Now our customer asks us if we can also place data into another
separate relational database when the form is submitted as well as
continuing to place data in the original database. We need to put
data in both databases, and if we want to ensure that no records exist
in one that don’t exist in the other as a result of a form submission,
we’re going to need to do a pretty complicated commit and rollback
dance in each place in our code which needs to write to both data
stores. We can’t just blindly commit one, then commit the other,
because the second commit may fail and we’ll be left with “orphan”
data in the first, and we’ll either need to clean it up manually or
leave it there to trip over later.

A transaction manager helps us ensure that no data is committed to
either database unless both participating data stores can commit.
Once the transaction manager determines that both data stores are
willing to commit, it will commit them both in very quick succession,
so that there is only a minimal chance that the second data store will
fail to commit. If it does, the system will raise an error that makes
it impossible to begin another transaction until the system restarts,
so the damage is minimized. In practice, this error almost never
occurs unless the code that interfaces the database to the transaction
manager has a bug.

Adding repoze.tm2 To Your WSGI Pipeline

Via PasteDeploy .INI configuration:

[pipeline:main]
 pipeline =
 egg:repoze.tm2#tm
 myapp

Via Python:

from otherplace import mywsgiapp

from repoze.tm import TM
new_wsgiapp = TM(mywsgiapp)

Using A Commit Veto

If you’d like to veto commits based on the status code returned by the
downstream application, use a commit veto callback.

First, define the callback somewhere in your application:

def commit_veto(environ, status, headers):
 for header_name, header_value in headers:
 if header_name.lower() == 'x-tm':
 if header_value.lower() == 'commit':
 return False
 return True
 for bad in ('4', '5'):
 if status.startswith(bad):
 return True
 return False

Then configure it into your middleware.

Via Python:

from otherplace import mywsgiapp
from my.package import commit_veto

from repoze.tm import TM
new_wsgiapp = TM(mywsgiapp, commit_veto=commit_veto)

Via PasteDeploy:

[filter:tm]
commit_veto = my.package:commit_veto

In the PasteDeploy example, the path is a Python dotted name, where the dots
separate module and package names, and the colon separates a module from its
contents. In the above example, the code would be implemented as a
“commit_veto” function which lives in the “package” submodule of the “my”
package.

A variant of the commit veto implementation shown above as an example is
actually present in the repoze.tm2 package as
repoze.tm.default_commit_veto. It’s fairly general, so you needn’t
implement one yourself. Instead just use it.

Via Python:

from otherplace import mywsgiapp
from repoze.tm import default_commit_veto

from repoze.tm import TM
new_wsgiapp = TM(mywsgiapp, commit_veto=default_commit_veto)

Via PasteDeploy:

[filter:tm]
commit_veto = repoze.tm:default_commit_veto

API documentation for default_commit_veto exists at
repoze.tm.default_commit_veto().

Mocking Up A Data Manager

The piece of code you need to write in order to participate in ZODB
transactions is called a ‘data manager’. It is typically a class.
Here’s the interface that you need to implement in the code for a data
manager:

class IDataManager(zope.interface.Interface):
 """Objects that manage transactional storage.

 These objects may manage data for other objects, or they
 may manage non-object storages, such as relational
 databases. For example, a ZODB.Connection.

 Note that when some data is modified, that data's data
 manager should join a transaction so that data can be
 committed when the user commits the transaction. """

 transaction_manager = zope.interface.Attribute(
 """The transaction manager (TM) used by this data
 manager.

 This is a public attribute, intended for read-only
 use. The value is an instance of ITransactionManager,
 typically set by the data manager's constructor. """
)

 def abort(transaction):
 """Abort a transaction and forget all changes.

 Abort must be called outside of a two-phase commit.

 Abort is called by the transaction manager to abort transactions
 that are not yet in a two-phase commit.
 """

 # Two-phase commit protocol. These methods are called by
 # the ITransaction object associated with the transaction
 # being committed. The sequence of calls normally follows
 # this regular expression: tpc_begin commit tpc_vote
 # (tpc_finish | tpc_abort)

 def tpc_begin(transaction):

 """Begin commit of a transaction, starting the
 two-phase commit.

 transaction is the ITransaction instance associated with the
 transaction being committed.
 """

 def commit(transaction):

 """Commit modifications to registered objects.

 Save changes to be made persistent if the transaction
 commits (if tpc_finish is called later). If tpc_abort
 is called later, changes must not persist.

 This includes conflict detection and handling. If no
 conflicts or errors occur, the data manager should be
 prepared to make the changes persist when tpc_finish
 is called. """

 def tpc_vote(transaction):
 """Verify that a data manager can commit the transaction.

 This is the last chance for a data manager to vote 'no'. A
 data manager votes 'no' by raising an exception.

 transaction is the ITransaction instance associated with the
 transaction being committed.
 """

 def tpc_finish(transaction):

 """Indicate confirmation that the transaction is done.

 Make all changes to objects modified by this
 transaction persist.

 transaction is the ITransaction instance associated
 with the transaction being committed.

 This should never fail. If this raises an exception,
 the database is not expected to maintain consistency;
 it's a serious error. """

 def tpc_abort(transaction):

 """Abort a transaction.

 This is called by a transaction manager to end a
 two-phase commit on the data manager. Abandon all
 changes to objects modified by this transaction.

 transaction is the ITransaction instance associated
 with the transaction being committed.

 This should never fail.
 """

 def sortKey():

 """Return a key to use for ordering registered
 DataManagers.

 ZODB uses a global sort order to prevent deadlock when
 it commits transactions involving multiple resource
 managers. The resource manager must define a
 sortKey() method that provides a global ordering for
 resource managers. """
 # Alternate version:
 #"""Return a consistent sort key for this connection.
 # #This allows ordering multiple connections that use
 the same storage in #a consistent manner. This is
 unique for the lifetime of a connection, #which is
 good enough to avoid ZEO deadlocks. #"""

Let’s implement a mock data manager. Our mock data manager will write
data to a file if the transaction commits. It will not write data to
a file if the transaction aborts:

class MockDataManager:

 transaction_manager = None

 def __init__(self, data, path):
 self.data = data
 self.path = path

 def abort(self, transaction):
 pass

 def tpc_begin(self, transaction):
 pass

 def commit(self, transaction):
 import tempfile
 self.tempfn = tempfile.mktemp()
 temp = open(self.tempfn, 'wb')
 temp.write(self.data)
 temp.flush()
 temp.close()

 def tpc_vote(self, transaction):
 import os
 if not os.path.exists(self.tempfn):
 raise ValueError('%s doesnt exist' % self.tempfn)
 if os.path.exists(self.path):
 raise ValueError('file already exists')

 def tpc_finish(self, transaction):
 import os
 os.rename(self.tempfn, self.path)

 def tpc_abort(self, transaction):
 import os
 try:
 os.remove(self.tempfn)
 except OSError:
 pass

We can create a datamanager and join it into the currently running
transaction:

dm = MockDataManager('heres the data', '/tmp/file')
import transaction
t = transaction.get()
t.join(dm)

When the transaction commits, a file will be placed in ‘/tmp/file’
containing ‘heres the data’. If the transaction aborts, no file will
be created.

If more than one data manager is joined to the transaction, all of
them must be willing to commit or the entire transaction is aborted
and none of them commit. If you can imagine creating two of the mock
data managers we’ve made within application code, if one has a problem
during “tpc_vote”, neither will actually write a file to the ultimate
location, and thus your application consistency is maintained.

Integrating Your Data Manager With repoze.tm2

The repoze.tm2 transaction management machinery has an implicit
policy. When it is in the WSGI pipeline, a transaction is started
when the middleware is invoked. Thus, in your application code,
calling “import transaction; transaction.get()” will return the
transaction object created by the repoze.tm2 middleware. You
needn’t call t.commit() or t.abort() within your application code.
You only need to call t.join, to register your data manager with the
transaction. repoze.tm2 will abort the transaction if an
exception is raised by your application code or lower middleware
before it returns a WSGI response. If your application or lower
middleware raises an exception, the transaction is aborted.

Cleanup

When the repoze.tm2 middleware is in the WSGI pipeline, a boolean
key is present in the environment (repoze.tm.active). A utility
function named repoze.tm.isActive() can be imported and passed the
WSGI environment to check for activation:

from repoze.tm import isActive
tm_active = isActive(wsgi_environment)

If an application needs to perform an action after a transaction ends, the
repoze.tm.after_end registry may be used to register a callback.
This object is an instance fo the repoze.tm.AfterEnd class. The
repoze.tm.AfterEnd.register() method accepts a callback (accepting no
arguments) and a transaction instance:

from repoze.tm import after_end
import transaction
t = transaction.get() # the current transaction
def func():
 pass # close a connection, etc
after_end.register(func, t)

“after_end” callbacks should only be registered when the transaction
manager is active, or a memory leak will result (registration cleanup
happens only on transaction commit or abort, which is managed by
repoze.tm2 while in the pipeline).

Further Documentation

Many database adapters written for Zope (e.g. for Postgres, MySQL,
etc) use this transaction manager, so it should be possible to take a
look in these places to see how to implement a more real-world
transaction-aware database connector that uses this module in non-Zope
applications:

	http://www.zodb.org/en/latest/documentation/guide/transactions.html

	http://mysql-python.sourceforge.net/ (ZMySQLDA)

	http://www.initd.org/svn/psycopg/psycopg2/trunk/ (ZPsycoPGDA)

Contacting

The repoze-dev maillist [http://lists.repoze.org/mailman/listinfo/repoze-dev] should be used
for communications about this software.

Report bugs on Github: https://github.com/repoze/repoze.tm2/issues

Fork it on Github: https://github.com/repoze/repoze.tm2/

API Docs

	repoze.tm2 API

Change Logs

	repoze.tm2 Change History

	Changelog
	2.1.1 (unreleased)

	2.1 (2016-06-03)

	2.0 (2013-06-26)

	2.0b1 (2013-04-05)

	1.0 (2012-03-24)

	1.0b2 (2011-07-18)

	1.0b1 (2011-01-19)

	1.0a5 (2009-09-07)

	1.0a4 (2009-01-06)

	1.0a3 (2008-08-03)

	1.0a2 (2008-07-15)

	1.0a1 (2008-01-09)

	0.8 (2007-10-11)

	0.7 (2007-09-25)

	0.6 (2007-09-21)

	0.5 (2007-09-18)

	0.4 (2007-09-17)

	0.3 (2007-09-14)

	0.2 (2007-09-13)

	0.1 (2007-09-10)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2008-2013, Repoze Developers <repoze-dev@lists.repoze.org>.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	repoze.tm2 2.0 documentation

repoze.tm2 API

	
after_end

	

 Copyright 2008-2013, Repoze Developers <repoze-dev@lists.repoze.org>.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	repoze.tm2 2.0 documentation

repoze.tm2 Change History

Changelog

2.1.1 (unreleased)

	TBD

2.1 (2016-06-03)

	Add support for Python 3.4, 3.5 and PyPy3.

	Drop support for Python 2.6 and 3.2.

	Add support for testing under Travis.

2.0 (2013-06-26)

	Avoid swallowing the original exception while aborting the transaction
in middleware. See PR #3.

2.0b1 (2013-04-05)

	Middleware is now a generator, to deal appropriately with application
iterators which are themselves not lists.

	Convert use of deprecated failIf/failUnless to assertFalse/assertTrue.

	Add support for testing under supported Pythons using Tox.

	Add explicit support for Python 3.2 ad 3.3.

	Drop support for Python 2.4, 2.5.

1.0 (2012-03-24)

	Run OOTB under Python 2.4 / 2.5 (pin ‘transaction’ dependency to
a supported version when running under 2.4 / 2.5).

1.0b2 (2011-07-18)

	A new header X-Tm is now honored by the default_commit_veto commit
veto hook. If this header exists in the headerlist, its value must be a
string. If its value is commit, the transaction will be committed
regardless of the status code or the value of X-Tm-Abort. If the value
of the X-Tm header is abort (or any other string value except
commit), the transaction will be aborted regardless of the status code
or the value of X-Tm-Abort.

	Use of the X-Tm-Abort header is now deprecated. Instead use the
X-Tm header with a value of abort instead.

	Add API docs section.

1.0b1 (2011-01-19)

	Added repoze.tm.default_commit_veto commit veto hook. This commit veto
hook aborts for 4XX and 5XX response codes, or if there’s a header named
X-Tm-Abort in the headerlist and allows a commit otherwise.

	Documented commit veto hook.

1.0a5 (2009-09-07)

	Don’t commit after aborting if the transaction was doomed or if the
commit veto aborted.

	Don’t use “real” transaction module in tests.

	100% test coverage.

1.0a4 (2009-01-06)

	RESTify CHANGES, move docs in README.txt into Sphinx.

	Remove setup.cfg (all dependencies available via PyPI).

	Synchronization point with repoze.tm (0.9).

1.0a3 (2008-08-03)

Allow commit_veto hook to be specified within Paste config, ala:

[filter:tm]
use = repoze.tm:make_tm
commit_veto = some.package:myfunction

myfunction should take three args: environ, status, headers and
should return True if the txn should be aborted, False if it should be
committed.

Initial PyPI release.

1.0a2 (2008-07-15)

	Provide “commit_veto” hook point (contributed by Alberto Valverde).

	Point easy_install at http://dist.repoze.org/tm2/dev/simple via setup.cfg.

1.0a1 (2008-01-09)

	Fork point: we’ve created repoze.tm2, which is repoze.tm that has a
dependency only on the ‘transaction’ package instead of all of ZODB.

	Better documentation for non-Zope usage in README.txt.

0.8 (2007-10-11)

	Relaxed requirement for ZODB 3.7.2, since we might need to use the
package with other verions. Note that the tests which depend on
transaction having “doom” semantics don’t work with 3.7.2, anyway.

0.7 (2007-09-25)

	Depend on PyPI release of ZODB 3.7.2. Upgrade to this by doing
bin/easy_install -U ‘ZODB3 >= 3.7.1, < 3.8.0a’ if necessary.

0.6 (2007-09-21)

	after_end.register and after_end.unregister must now be passed a
transaction object rather than a WSGI environment to avoid the
possibility that the WSGI environment used by a child participating
in transaction management won’t be the same one used by the
repoze.tm package.

	repoze.tm now inserts a key into the WSGI environment
(repoze.tm.active) if it’s active in the WSGI pipeline. An API
function, repoze.tm:isActive can be called with a single argument,
the WSGI environment, to check if the middleware is active.

0.5 (2007-09-18)

	Depend on rerolled ZODB 3.7.1 instead of zopelib.

	Add license and copyright, change trove classifiers.

0.4 (2007-09-17)

	Depend on zopelib rather than ZODB 3.8.0b3 distribution, because the
ZODB distribution pulls in various packages (zope.interface and ZEO
most notably) that are incompatible with stock Zope 2.10.4 apps and
older sandboxes. We’ll need to revisit this.

0.3 (2007-09-14)

	Provide limited compatibility for older transaction package versions
which don’t support the ‘transaction.isDoomed’ API.

0.2 (2007-09-13)

	Provide after_end API for registering callbacks at transaction end.

0.1 (2007-09-10)

	Initial Release

 Copyright 2008-2013, Repoze Developers <repoze-dev@lists.repoze.org>.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	repoze.tm2 2.0 documentation

Index

 A

A

 	

 	after_end

 Copyright 2008-2013, Repoze Developers <repoze-dev@lists.repoze.org>.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

 _static/file.png

search.html

 Navigation

 		
 index

 		repoze.tm2 2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2013, Repoze Developers <repoze-dev@lists.repoze.org>.
 Last updated on Jun 03, 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/logo_hi.png
Repoze

_static/comment-bright.png

_static/comment-close.png

